22 Jan 2015

উৎপাদকে বিশ্লেষণ করা মানে হলো একটি সংখ্যার ছোট ছোট উৎপাদক বের করা। যেমনঃ ২২, এর উৎপাদক হল ২,১১। আমরা লিখতে পারি ২২=১১×২

আবার ২৪ কে লিখতে পারি, ২৪=২×২×২×৩ = ২×৩

একটি রাশিমালার যতগুলো উৎপাদক আছে তার প্রত্যেকটি দিয়ে ঐ রাশিমালা নিঃশেষে বিভাজ্য হবে। অর্থাৎ উৎপাদক দিয়ে ভাগ করলে ভাগশেষ শূন্য হবে।

আমাদের কাছে কঠিন মনে হয় যখন অজ্ঞাত রাশি ব্যবহার করা হয়। যেমন, x3+ y3

উৎপাদক বের করার প্রথম শর্ত হল সাধারণ কোন রাশি থাকলে তা পৃথক করা। যেমন 24x + xy

দেখেই বুঝা যাচ্ছে এখানে x সাধারণ আছে।

24x + xy= x(24+y)

এখন যদি 24x + 3xy হত তবে এখানে 3x সাধারণ আছে।

24x + xy =3x(8+y)

উৎপাদকে বিশ্লেষণ করার জন্যে আমাদের কত গুলো সূত্র জানতে হবেঃ

a2 - b2 = (a+b)(a-b)

a2 + 2ab + b2 = (a+b)(a+b)

a2 - 2ab + b2 = (a-b)(a-b)

a3 + b3 = (a+b)(a2-ab+b2)

a3 - b3 = (a-b)(a2+ab+b2)

a3+3a2b+3ab2+b3 = (a+b)3

a3-3a2b+3ab2-b3 = (a-b)3

a2 - b2 = (a+b)(a-b) এই সূত্রটি বহুল ব্যবহৃত। দুটি বর্গ রাশির পার্থক্য থাকলে এই সূত্রটি ব্যবহার করা হয়।

যেমনঃ w4 - 16

w4 - 16 = (w2)2 - 42

Yes, it is the difference of squares

w4 - 16 = (w2 + 4)(w2 - 4)

And “(w2 - 4)” is another difference of squares

w4 - 16 = (w2 + 4)(w + 2)(w - 2)

x2- y+ 2y -1

এরকম রাশিমালার ক্ষেত্রে প্রথমে দেখে নিতে হবে ২ এর গুণিতক কার সাথে আছে, কারণ a2 + 2ab + b2 = (a+b)2এই সূত্রে অবশ্যি একটি সংখ্যা থাকবে যা ২ এর গুণিতক। প্রদত্ত রাশিমালায় 2y আছে। 2y কে লেখা যায় 2.y.1

তাহলে y এর সাথে 1 এর একটি সূত্রে আনতে হবে।

x2- y+ 2y -1

= x- (y- 2y +1)

= x2- (y-1)2   এখন এটি দুটি বর্গ রাশির বিয়োগফল আকারে প্রকাশিত হয়েছে।

= (x+y-1)(x-y+1)

a4+4; এরকম থাকলে প্রথমে সংখ্যাটিকে বর্গ করে নিতে হবে।

= (a2)2 +(2)2

=(a2)2 +2.a2.2 +(2)2- 4a2; যেহেতু বর্গ করার জন্য 4a2 যোগ করা হয়েছে তাই এটি বাদ দিতে হবে।

=(a2 +2)2 -(2a)2

=(a2+2+2a)(a2+2-2a)

=(a2+2a+2)(a2-2a+2)

A2 + 7A+ 12

মনে করুন আমরা রাশিমালাটিকে এই ভাবে লিখলাম,

A2 + 3A + 4A + 12

= A(A+3) + 4(A+3)

=(A+3)(A+4)

খুব সহজে উৎপাদকে বিশ্লেষণ হয়ে গেল।

আবার দেখুন,

A2 – 2AB + B2

=A2- AB – AB + B2

=A(A-B) – B (A-B)

= (A-B)(A-B)

=(A-B)2

নিয়মঃ

এই নিয়মে অনেক উৎপাদক বিশ্লেষণ করা সম্ভব। কিন্তু এই নিয়মে সমাধান শুধুমাত্র তখনই সম্ভব

যদি ১ম রাশির অজ্ঞাত রাশি × তৃতীয় রাশির অজ্ঞাত রাশি = ২য় রাশির অজ্ঞাত রাশির দুই বারের গুণফল।

খেয়াল করুন, ১ম রাশির অজ্ঞাত রাশি × তৃতীয় রাশির অজ্ঞাত রাশি = A2

২য় রাশি =7A, A কে দুই বার গুণ করলে A2 হবে।

এখন যেভাবে সমাধান করবেন,

১ম রাশির জ্ঞাত রাশি এবং তৃতীয় রাশির জ্ঞাত রাশি গুণ করবেন।

প্রদত্ত অংকে গুণফল ৩ * ৪ = +১২। +১২ লেখার মানে হল উৎপাদক দুটির যোগ হবে।

দ্বিতীয় রাশিটির জ্ঞাত সংখ্যাটি মনে রাখুন- এখানে ৭

১২ এর উৎপাদক গুলো যুগল আকারে লিখুন, ১, ১২; ২, ৬; ৩, ৪

আমাদের শেষ কাজটি হল কোন উৎপাদক যুগল যোগ করলে ৭ হয় সেটি নেয়া। অবশ্যি এখানে ৩ এবং ৪।

আমরা আরেকটি অংক করি।

6x2 -5x -1

প্রথমে দেখব, আমাদের নিয়মে অঙ্কটি করা যায় কিনা। ১ম রাশির অজ্ঞাত রাশি × তৃতীয় রাশির অজ্ঞাত রাশি = x2

২য় রাশি =5x, x কে দুই বার গুণ করলে x 2 হবে।

তাহলে এই নিয়মে অংকটি সমাধান করা যাবে।

এখন ১ম রাশির জ্ঞাত রাশি এবং তৃতীয় রাশির জ্ঞাত রাশি গুণ করবেন।

প্রদত্ত অংকে গুণফল ৬ * (-১) = -৬। -৬ লেখার মানে হল উৎপাদক দুটির বিয়োগ হবে।

দ্বিতীয় রাশিটির জ্ঞাত সংখ্যাটি মনে রাখুন- এখানে ৫

৬ এর উৎপাদক গুলো যুগল আকারে লিখুন, ১, ৬ এবং ২, ৩

আমাদের শেষ কাজটি হল কোন উৎপাদক যুগল বিয়োগ করলে ৫ হয় সেটি নেয়া। অবশ্যি এখানে ৬ এবং ১।

6x2 -5x -1

=6x2-6x + x -1

=6x(x-1) +1(x-1)

=(x-1)(6x+1)

3x3+2x2-21x-20 রাশিটিরএকটিউৎপাদকহচ্ছে—

1)x+2
2)x-2
3)x+1
4)x-1

মাঝে মাঝে এই ধরনের প্রশ্ন আসে।

অনেকেই এই ধরনের উৎপাদক দেখে ভয় পেয়ে যায় কিভাবে করবে,অনেক সময় লাগবে।এই অংক অতি সহজেই করা যায়।

একটি রাশিমালার যতগুলো উৎপাদক আছে তার প্রত্যেকটি দিয়ে ঐ রাশিমালা নিঃশেষে বিভাজ্য হবে। অর্থাৎ উৎপাদক দিয়ে ভাগ করলে ভাগশেষ শূন্য হবে।

আমরা এই পর্যন্ত যেসব উৎপাদকের উদাহরণ দেখেছি তা যাচাই করিঃ

6x2 -5x -1 =(x-1)(6x+1)

6x2 -5x -1 এর একটি উৎপাদক x-1, এখন এই রাশিমালায় যদি আমরা x=1 বসাই দেখি কি হয়ঃ

6X(1)2-5X1 -1 = 0

তাহলে একটি রাশি উৎপাদক কিনা তা যাচাই করার উপায় হল X এর মান কত হলে এই সমীকরনের মান শূন্য হবে। যদি বের করতে হয়, x+2 উৎপাদক কিনে তাহলে x=-2 বসিয়ে অংক করতে হবে; যদি x-3 উৎপাদক কিনা বের করতে হয় তবে x=3 বসিয়ে রাশিমালার মান বের করতে হবে।

প্রশ্নটি আবার দেখুন, 3x3+2x2-21x-20 রাশিটির একটিউৎপাদক হচ্ছে—

প্রথম অপশন হচ্ছে 1)x+2

তাহলে x=-2 ধরে আমরা মান বের করি,

3x3+2x2-21x-20 = 3(-2)3+ 2(-2)2-21(-2) -20 = -24 + 8 +42 -20 = 6

অর্থাৎ x+2 উৎপাদক না।
X এর মান যদি -1 ধরি তাহলে সমীকরনটি দাঁড়ায়

3(-1)3+2(-1)2-21.(-1)-20

=3(-1)+2.1+21-20

=-3+2+21-20

=23-23

=0

তাহলে আমরা দেখলাম যে X এর মান -1 শূন্য হওয়ায় সমীকরনটির মান 0 (শুন্য) হয়।অর্থাৎ  f(x)=0

অর্থাৎ x+1 উৎপাদক।


BCS PRELIMINARY & WRITTEN

Learn from scratch to become a first class officer.


BANK JOBS

A huge collection of Bank Job Questions to guide you through.


NTRCA

Easy and simple way to succeed.


GOVT. JOBS

StudyPress has solutions of ALL previous govt job tests.


MBA ADMISSION TEST

Worried about Math and English? Try Studypress


CURRENT NEWS

Every Important News updates for Job Preparation.


MISTAKE LIST

Something you will find nowhere else, but you need the most.


ALL PREVIOUS QUESTION & SOLUTIONS

The test was held yesterday? Solution is here!!


Login Now